Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(8): e10420, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600492

RESUMEN

Litter quality has long been associated with demographic parameters of Collembola populations. However, little is known about the capacity of Collembola to perceive and seek better litter quality. To address this gap, three complementary laboratory experiments were carried out with the Collembola Folsomia candida. First, populations were fed on three different types of leaf litters (Quercus pubescens, Acer opalus and Prunus avium) and a control (agar-agar-brewer's yeast mixture) for 6 weeks to assess their impacts on demography (reproduction rate and population size). Second, the body length of individuals differentially fed with the same four types of resources was measured to assess a functional trait that can potentially affect movement parameters such as prospected area or foraging speed. Third, F. candida single individuals were exposed to the same litter quality gradient and placed at an increasing distance from the litter (from 1 to 5 cm). For 10 min, their foraging behaviour was recorded which included prospected area, foraging speed, perception distance and success in reaching the litter (foraging success). As expected, low-quality litter (i.e. Q. pubescens) contributed to low population growth compared to the control treatment and the high-quality litters (P. avium and A. opalus). In the third experiment, the probability of finding the resource was negatively correlated to the distance, but was unrelated to the litter quality and the Collembola body length. When resource was perceived, F. candida was able to switch from non-directional to directional movements, with a large variability in the perception distance from a few millimetres to several centimetres. Taken together, our results indicate that litter quality plays a relevant role in Collembola demographic parameters once the population settles on litter patch, but not on foraging behaviour to select high-quality resources.

2.
Glob Chang Biol ; 26(1): 119-188, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891233

RESUMEN

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.


Asunto(s)
Acceso a la Información , Ecosistema , Biodiversidad , Ecología , Plantas
3.
Ecol Appl ; 28(4): 1093-1105, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29495110

RESUMEN

Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations.


Asunto(s)
Abejas , Biodiversidad , Productos Agrícolas , Animales , Arándanos Azules (Planta) , Malus , Polinización , Quebec , Rubus , Estaciones del Año
4.
Ecol Evol ; 8(23): 11568-11581, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598757

RESUMEN

Foundation plants shape the composition of local biotic communities and abiotic environments, but the impact of a plant's intraspecific variations on these processes is poorly understood. We examined these links in the alpine cushion moss campion (Silene acaulis) on two neighboring mountain ranges in the French Alps. Genotyping of cushion plants revealed two genetic clusters matching known subspecies. The exscapa subspecies was found on both limestone and granite, while the longiscapa one was only found on limestone. Even on similar limestone bedrock, cushion soils from the two S. acaulis subspecies deeply differed in their impact on soil abiotic conditions. They further strikingly differed from each other and from the surrounding bare soils in fungal community composition. Plant genotype variations accounted for a large part of the fungal composition variability in cushion soils, even when considering geography or soil chemistry, and particularly for the dominant molecular operational taxonomic units (MOTUs). Both saprophytic and biotrophic fungal taxa were related to the MOTUs recurrently associated with a single plant genetic cluster. Moreover, the putative phytopathogens were abundant, and within the same genus (Cladosporium) or species (Pyrenopeziza brassicae), MOTUs showing specificity for each plant subspecies were found. Our study highlights the combined influences of bedrock and plant genotype on fungal recruitment into cushion soils and suggests the coexistence of two mechanisms, an indirect selection resulting from the colonization of an engineered soil by free-living saprobes and a direct selection resulting from direct plant-fungi interactions.

5.
Ecol Evol ; 7(17): 6904-6917, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904770

RESUMEN

The fragmentation of natural habitats is a major threat for biodiversity. However, the impact and spatial scale of natural isolation mechanisms leading to species loss, compared to anthropogenic fragmentation, are not clear, mainly due to differences between fragments and islands, such as matrix permeability. We studied a 500 km2 Mediterranean region in France, including urban habitat fragments, continuous habitat, and continental-shelf islands. On the basis of 295 floristic relevés, we built species-area relationships to compare isolation in fragments after urbanization, with continuous habitat and continental-shelf islands. We assumed either no dispersal, infinite dispersal, or estimated intermediate levels of habitat reachability through graph theory. Isolation mechanisms occurred in fragments but with a lower strength than in near-shore islands, and most importantly affected perennial plants. Annual plants were less affected, probably due to their smaller size and shorter life cycle. Isolation occurred at landscape level in fragments and at patch level in islands. The amount of reachable habitat (accounting for spatial configuration) explained local species richness in both systems, but the amount of habitat (no consideration of spatial configuration) was already a good predictor. These results suggest an important role of habitat amount around fragments in mitigating the isolation effects observed in near-shore islands, and the importance of carefully considering different functional groups.

6.
Conserv Biol ; 31(6): 1383-1396, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28383758

RESUMEN

Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Distribución Animal , Animales , Modelos Biológicos , Quebec , Vertebrados
7.
Ecol Lett ; 18(12): 1406-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26415616

RESUMEN

Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.


Asunto(s)
Biodiversidad , Fenotipo , Fenómenos Fisiológicos de las Plantas , Especificidad de la Especie
8.
Ecol Lett ; 16(10): 1234-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23910526

RESUMEN

Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait-based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait-phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología/métodos , Modelos Biológicos , Ecosistema
9.
Funct Ecol ; 27(2): 382-391, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24790285

RESUMEN

Functional variability (FV) of populations can be decomposed into three main features: the individual variability of multiple traits, the strength of correlations between those traits and the main direction of these correlations, the latter two being known as 'phenotypic integration'. Evolutionary biology has long recognized that FV in natural populations is key to determining potential evolutionary responses, but this topic has been little studied in functional ecology.Here we focus on the arctico-alpine perennial plant species Polygonum viviparum L.. We used a comprehensive sampling of seven functional traits in 29 wild populations covering the whole environmental niche of the species. The niche of the species was captured by a temperature gradient, which separated alpine stressful habitats from species-rich, competitive sub-alpine ones. We seeked to assess the relative roles of abiotic stress and biotic interactions in shaping different aspects of functional variation within and among populations, that is, the multi-trait variability, the strength of correlations between traits, and the main directions of functional trade-offs.Populations with the highest extent of functional variability were found in the warm end of the gradient whereas populations exhibiting the strongest degree of phenotypic integration were located in sites with intermediate temperatures. This could reveal both the importance of environmental filtering and population demography in structuring FV. Interestingly, we found that the main axes of multivariate functional variation were radically different within and across population.Although the proximate causes of FV structure remain uncertain, our study presents a robust methodology for the quantitative study of functional variability in connection with species' niches. It also opens up new perspectives for the conceptual merging of intraspecific functional patterns with community ecology.

10.
Methods Mol Biol ; 888: 3-12, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22665272

RESUMEN

Landscape genomics, based on the sampling of individuals genotyped for a large number of markers, may lead to the identification of regions of the genome correlated to selection pressures caused by the environment. In this chapter, we discuss sampling strategies to be used in a landscape genomics approach. We suggest that designs based on model-based stratification using the climatic and/or biological spaces are in general more efficient than designs based on the geographic space. More work is needed to identify designs that allow disentangling environmental selection pressures versus other processes such as range expansions or hierarchical population structure.


Asunto(s)
Genética de Población/métodos , Genoma , Genómica/métodos , Adaptación Fisiológica , Animales , Ambiente , Variación Genética , Genética de Población/estadística & datos numéricos , Genómica/estadística & datos numéricos , Genotipo , Plantas , Selección Genética
11.
Trends Ecol Evol ; 27(4): 244-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22244797

RESUMEN

Despite being recognized as a promoter of diversity and a condition for local coexistence decades ago, the importance of intraspecific variance has been neglected over time in community ecology. Recently, there has been a new emphasis on intraspecific variability. Indeed, recent developments in trait-based community ecology have underlined the need to integrate variation at both the intraspecific as well as interspecific level. We introduce new T-statistics ('T' for trait), based on the comparison of intraspecific and interspecific variances of functional traits across organizational levels, to operationally incorporate intraspecific variability into community ecology theory. We show that a focus on the distribution of traits at local and regional scales combined with original analytical tools can provide unique insights into the primary forces structuring communities.


Asunto(s)
Biodiversidad , Ecología , Animales
12.
Biol Lett ; 6(1): 120-3, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-19793738

RESUMEN

Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.


Asunto(s)
Adaptación Biológica/fisiología , Ecosistema , Modelos Biológicos , Desarrollo de la Planta , Francia , Especificidad de la Especie , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...